
COP 3330: Introduction Page 1 © Mark Llewellyn

COP 3330: Object-Oriented Programming
Summer 2007

Introduction to Object-Oriented Programming

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
HEC 236, 823-2790

http://www.cs.ucf.edu/courses/cop3330/sum2007

COP 3330: Introduction Page 2 © Mark Llewellyn

Course Topics
• Software Development, Object Oriented

Software Development
• Introduction to Java

– First Application and Applet Programs
• Simple Java Statements

– Variables, Declarations, Assignment
Statements, Simple I/0, Creating Objects

– Control Statements, Boolean Expressions,
Loops, Arrays, Strings

COP 3330: Introduction Page 3 © Mark Llewellyn

Course Topics (cont.)

• Writing Classes
– Methods, Parameter Passing, Static Modifier,

Constructors
– Interfaces, Events and Listeners

• Inheritance
– Extending Classes, Designing Classes, Class

Hierarchies
• Exceptions, I/O Streams
• Graphical User Interface (GUI)

– Containers, Components, Layout Managers
• Design by Abstraction (UML Diagrams)

COP 3330: Introduction Page 4 © Mark Llewellyn

Programming
• A program is a set of instructions to solve a given

task.
• These instructions are not given in English. They are

in a form that a computer can understand.
• Before we write a computer program to solve a

problem, we should organize its solution. (problem
solving)

• Normally we are good in problem solving, but we
should apply certain methods to solve problems
(especially when we solve large problems)

COP 3330: Introduction Page 5 © Mark Llewellyn

Programming (cont.)

• Good problem solving steps make life easier when
we write a computer program to solve a given
problem. We will talk about top-down approach
(divide and conquer) when we organize solutions
for problems.

• We will also talk about object-orient software
development techniques.

COP 3330: Introduction Page 6 © Mark Llewellyn

Programming Languages

• Instructions to solve a problem can be written in
many different programming languages.

• Some of them can directly understandable by the
computers and others need to be translated into
instructions that the computer can understand.

COP 3330: Introduction Page 7 © Mark Llewellyn

Programming Languages (cont.)

– Programming languages may be divided into: Machine
Languages, Assembly Languages, High-Level
Languages

– Any computer can directly understand its own machine
language. (patterns of 0s and 1s). Machine languages
are machine dependent and cumbersome for humans.

– Assembly languages are English like abbreviations of
machine instructions Assembly programs are translated
into machine languages using assemblers.

COP 3330: Introduction Page 8 © Mark Llewellyn

Programming Languages (cont.)

– Some of High-Level Languages: Pascal,
ALGOL, FORTRAN, Basic, C, C++, Java,
Lisp, Prolog

– Compilers convert programs written in high-
level languages into machine languages

COP 3330: Introduction Page 9 © Mark Llewellyn

Software Development

• Steps of developing a software to solve a problem:
1. Problem Understanding

– Read the problem carefully and try to understand what is
required for its solution.

2. Analysis and Design
– Identify problem inputs and outputs.
– Identify the data structures to model the data which is required

for the problem.
– Develop a list of steps (algorithm) to solve the problem
– Refine steps of this algorithm. (Divide and Conquer)
– Verify that the algorithm solves the problem, i.e. the

algorithm is correct

COP 3330: Introduction Page 10 © Mark Llewellyn

Software Development (cont.)

3. Implementation
– Implement the algorithm as a (java) program.
– You have to know a specific programming language (java).
– Convert steps of the algorithm into programming language

statements.

4. Testing and Verification
– Test the completed program, and verify that it works as

expected .
– Use different test cases (not one) including critical test cases.

COP 3330: Introduction Page 11 © Mark Llewellyn

Desirable Qualities of Software Systems

• Usefulness
– Should adequately address the needs of their intended

users in solving problems and providing services.
• Timeliness

– Should be completed and shipped in a timely manner.
• Reliability

– Should perform as expected by users in terms of the
correctness of the functions being performed, and an
acceptable level of failures.

• Maintainability
– Should be easily maintained, easy to make corrections.

COP 3330: Introduction Page 12 © Mark Llewellyn

Desirable Qualities (cont.)

• Reusability
– Components of software systems should be designed as

general solutions (not ad hoc)

• User-Friendliness
– Should provide user friendly interfaces.

• Efficiency
– Should not waste the system resources (time,memory

and disk space)

COP 3330: Introduction Page 13 © Mark Llewellyn

Components of Software Systems

• A software system usually consists of two
components:
– Model – represents the organization of the required data
– Algorithm – computations involved in the processing

the data represented by the model.

• In the analysis and design phase of a software
development, the required data for that software
should be organized as a model, and the algorithm
which manipulates the data should be developed.

COP 3330: Introduction Page 14 © Mark Llewellyn

Components of Software Systems (cont.)

• In the classical software development, the
emphasis is on the algorithm part of the
software.

• In the object-oriented software development,
a balanced view of the data and the
computations is to be captured.

COP 3330: Introduction Page 15 © Mark Llewellyn

Object-Oriented Software Development

• Object-Oriented models are composed of objects.
• Objects contain data and make computations.
• The decomposition of a complex system is based

on the structure of classes, objects, and the
relationship among them. (divide-and-conquer).

• When we divide our problems into sub-problems,
we will try to design classes to solve these sub-
problems.

• We will use graphical notation to describe object-
oriented analysis and design models. This notation
is based on Unified Language Modelling (UML).

COP 3330: Introduction Page 16 © Mark Llewellyn

Classes and Objects
• Objects and classes are two fundamental concepts

in the object-oriented software development.
• An object has a unique identity, a state, and

behaviors. In the real life, an object is anything
that can be distinctly identified.

• A class characterizes the structure of states and
behaviors that shared by all its instances.

• The terms object and instance are often
interchangeable.

COP 3330: Introduction Page 17 © Mark Llewellyn

Classes and Objects (cont.)

• The features of an object are the combination of
the state and behavior of that object.
– The state of an object is composed of a set of attributes

(fields) and their current values.
– The behavior of an object is defined by a set of methods

(operations, functions, procedures).

• A class is a template for its instances. Instead of
defining the features of objects, we define features
of the classes to which these objects belong.

COP 3330: Introduction Page 18 © Mark Llewellyn

Classes in Java
• A class in Java can be defined as follows:

class Rectangle {
int length, width;
public int area() {………}
public void changeSizes(int x, int y)
{ ……… }

• The name of the class is: Rectangle. Its attributes are: length,
width. Its methods are: area, changeSizes

• This Rectangle class is a template for all rectangle objects. All
instances of this class will have same structure.

COP 3330: Introduction Page 19 © Mark Llewellyn

Objects in Java
• An object in Java is created from a class using
new operator.

Rectangle r1 = new Rectangle();
Rectangle r2 = new Rectangle();

length

r1width

length

width
r2

COP 3330: Introduction Page 20 © Mark Llewellyn

Graphical Representation of Classes

ClassName is the name of the class

Each field is
[Visibility][Type] identifier [=initialvalue]

Each method is
[Visibility][Type] identifier ([parameter-list])

Example:
• We may not give field,

methods parts

ClassName

field_1
...

field_n

method_1
...

method_m

Rectangle

int length
int width

public int area ()
public void changeSizes (int x, int y)

COP 3330: Introduction Page 21 © Mark Llewellyn

Graphical Representations of Objects
• We may omit ClassName, and just use objectName.
In this case the class of the object is no interest for us.

• We may omit objectName, and just use :ClassName.
In this case, the object is an anonymous object.

Rectangle r1 = new Rectangle();
r1.length = 20;
r1.width = 10;

Rectangle r2 = new Rectangle();
r2.length = 40;
r2.width = 30;

objectName: ClassName

field_1 = value_1
...

field_n = value_n

r1:Rectangle
length = 20
width = 10

r2:Rectangle
length = 40
width = 30

COP 3330: Introduction Page 22 © Mark Llewellyn

Message Passing
• A message consists of a receiving object (recipient), the method to be invoked,
and arguments to the method.

• Message passing is also known as method invocation.

r1.changeSizes(4,3) to change the size of r1 object

r2.area() to calculate the area of r2 object

COP 3330: Introduction Page 23 © Mark Llewellyn

Modularity
• A complex system should be decomposed into a

set of highly cohesive but loosely coupled
modules.

• A system may be extremely complex in its
totality, but a modular decomposition of the
system aims to break it down into modules so that:
– Each module is relatively small and simple (highly

cohesive)
– The interactions among modules are relatively simple

(loosely coupled).

COP 3330: Introduction Page 24 © Mark Llewellyn

Modularity (cont.)

• Modular decompositions are hierarchical
(module may contain sub-modules).

• Cohesion refers to the functional relatedness
of the entities within a module.

• Coupling refers to the interdependency
among different modules.

COP 3330: Introduction Page 25 © Mark Llewellyn

Abstraction and Encapsulation

• Abstraction and encapsulation are powerful tools
for deriving modular decomposition of systems.

• Abstraction means to separate the essential from
the non-essential characteristics of an entity.

• Abstraction: The behaviors and functionalities of
a module should be characterized in precise
description known as the contractual interface of
the module.

COP 3330: Introduction Page 26 © Mark Llewellyn

Abstraction and Encapsulation (cont.)

• Encapsulation: The clients (users of the module)
need know nothing more than the service contract
(contractual interface) while using the service
(where the module is the service provider).

• The implementation of the module should be
separated from its contractual interface and
hidden from the clients of that module
(information hiding).

• Encapsulation tries to reduce the coupling among
the modules.

COP 3330: Introduction Page 27 © Mark Llewellyn

Interface
• A contractual interface without any implementation

associated with it is known as an interface (or as an
abstract data type) in Java terminology.

• A module can be represented by two separate entities:
– An interface that describes the contractual interface of

the module.
– A class that implements the contractual interface.

• In Java, we define input/output behavior methods (without
implementing those methods) using interfaces.

• A class implementing an interface gives the
implementation of all the methods.

COP 3330: Introduction Page 28 © Mark Llewellyn

Inheritance
• Inheritance defines a relationship among classes.
• A class C2 inherits from (extends) another class

C1.
• C2 is the sub-class (child) of C1; C1 is the super-

class (parent) of C2.
• C2 inherits attributes and methods defined in C1.

In addition, it may also define new attributes and
methods.

COP 3330: Introduction Page 29 © Mark Llewellyn

Inheritance (cont.)

• Inheritance allows the fields and methods of
a super-class to be shared by its sub-classes.

Non-degree
Student Undergraduate

Graduate Master
PhD

COP 3330: Introduction Page 30 © Mark Llewellyn

Class Diagrams

• To design a software in an object-oriented
environment, first we design our model.

• Our model consists of the classes will be used in
our software, their hierarchies, and their
relationships among them.

• As an example consider the University environment
illustrated in the next slide.

COP 3330: Introduction Page 31 © Mark Llewellyn

Class Diagram Example
– We may have a Student class and this class may have sub-classes.

There will be a hierarchy among all student classes (Student,
NonDegree, UnderGrad, Grad, Master, PhD). This will be
accomplished by inheritance mechanism.

– We may also have Course, Department and Faculty classes.
– Each Faculty will be a member of a Department, Each Student

may be student of one ore more Departments. A Faculty will be the
chairman of a Department.

– Different Students may enroll to different Courses, a Faculty will
teach a Course.

– A Faculty can be advisor of many Students.

• All of these relations can be shown as class
diagrams in UML notation.

COP 3330: Introduction Page 32 © Mark Llewellyn

Algorithms
• After we designed the model for our software, we design

algorithms for our software.
• We give the order of operations and the creation order of

objects.
• In short, we design an algorithm (steps of our solution for

the given problem) for the dynamic behavior of our
software.

• We may use different notations to specify our algorithms:
– classical representation – list of steps, conditional execution,

repetitions, ...
– a sequence diagram – indicating order of operations.
– a pseudo code
– flow charts

COP 3330: Introduction Page 33 © Mark Llewellyn

Java & Object-Oriented Programming

• Java is an object-oriented programming language that was
developed at Sun Microsystems (by a team lead by James
Gosling).

• Java is one of many object-oriented programming
languages (others: C++, Smalltalk, Objective C,...).

• Java not only supports object-oriented programming, but it
also prohibits many bad programming styles and practices
(pointers, goto are not available in Java).

• Java is platform-independent. Java programs are compiled
into Java byte-codes and these byte-codes are interpreted
by Java byte-code interpreters available in different
platforms.

COP 3330: Introduction Page 34 © Mark Llewellyn

Executing Programs
• Programs in the most of programming languages (such as

C, Pascal,...) are compiled into the executable files, and
these executables files are directly executed by the
operating system and the hardware.

• These executable files are platform-dependent. They can
only run on the intended platforms.

• So, if we want to run our software on different platforms,
we have to prepare its versions for all platforms.

• Since the executable files are in machine codes, they can
run fast.

COP 3330: Introduction Page 35 © Mark Llewellyn

Executing Programs (cont.)

• Another approach to execute programs is interpretation.

• A source program in a programming language is directly
interpreted by the interpreter of that programming
language (such as some versions of LISP, Smalltalk).

• The interpretation approach is platform-independent.

• The execution speeds of programs will be much slower
when compared with compiled executables.

COP 3330: Introduction Page 36 © Mark Llewellyn

Java Execution Model
• Java execution model compromises between conventional

compilation and interpretation approaches.
• Java programs are compiled into Java byte-code (Machine

Code of Java Virtual Machine). The Java byte-code is
independent from the machine code of any architecture.
But they are close to machine code.

• These generated Java byte-codes are interpreted by Java
interpreters available in different platforms.

• So, the generated byte-codes are portable among different
systems.

• The execution of Java programs are slower because we
still use the interpretation approach.

COP 3330: Introduction Page 37 © Mark Llewellyn

Preparing a Java Program
• We are going to use JDK environment of

Sun Microsystems.

• JDK environment is simple to use and free.

• You can JDK environment for your own
computer from the Sun website:
http://java.sun.com

COP 3330: Introduction Page 38 © Mark Llewellyn

Preparing a Java Program (cont.)

• Editing the Program
– Create a file containing a Java program.

– You may use any text editor.
• You may use the textpad editor to create your .java files. You

can get the textpad editor from the website
http://www.textpad.com/

• On the Olympus system you can use emacs, or vi.

– This file will have a .java extension
• (Example: Example1.java)

COP 3330: Introduction Page 39 © Mark Llewellyn

Preparing a Java Program (cont.)

• Compiling
– Use Java compiler to compile the Java program. (javac

Example1.java)

– Java compiler will create a file with a .class extension.
This file will contain the Java byte-codes of your Java
program.

• Example: Example1.class.

– You can run this file in different platforms.

– The other compilers produce executable files.

COP 3330: Introduction Page 40 © Mark Llewellyn

Executing a Java Program
• Executing:

– Execute the byte-codes of your Java program by a Java
interpreter.

– We will see that there are two types of Java programs:
• Application
• Applet

– If our program is an application, we will execute it as
follows:
java Example1

this will interpret Example1.class file

COP 3330: Introduction Page 41 © Mark Llewellyn

Executing a Java Program (cont.)

– If our program is an applet:
1. First we will create a .html file containing a link

to our .class file.

2. Then we will run our applet using appletviewer:
appletviewer Example1.html

– We may run our applets under web-browsers
too.

COP 3330: Introduction Page 42 © Mark Llewellyn

A Simple Console Application Program

//Developer: Mark Llewellyn Date: May 15, 2007
//
//A Java application program that prints “Hello there, World!”

public class Example1
{ public static void main (String args[])

{ //print message
System.out.println(“Hello there, World!”);

} //end main
} //end class Example1

COP 3330: Introduction Page 43 © Mark Llewellyn

A Simple Console Application Program (cont.)

• Every Java application program defines a
class.

– Use the keyword class to declare a class.

– The name of a class is an identifier. Uppercase
and lowercase letters are different.

– The name of the class must be same as the
the file holding that class (Example1.java)

COP 3330: Introduction Page 44 © Mark Llewellyn

A Simple Console Application Program (cont.)

• Our class contains only one method.
– Every console application program should contain a

main method.
– It may contain other methods too.
– The method main should be declared using public and

static keywords.
– Our main method contains only one executable

statement
• This is a method invocation statement (print statement)

– // single line comments
– /* ... */ multi line comments

• Use white space between words/lines/blocks to make
easier to read programs.

COP 3330: Introduction Page 45 © Mark Llewellyn

A Simple Console Application Program (cont.)

• Using a text editor, put this application program into the
file Example1.java

• To compile: javac Example1.java
– creates Example1.class file (if there are no

syntax errors in the code)
• To run: java Example1

– java interpreter will interpret the byte-codes in
Example1.class file.

– As a result, we will see Hello there, World! appear on
the screen.

COP 3330: Introduction Page 46 © Mark Llewellyn

Simple Java Program (cont.)

• What do we have in our simple Java program?
– Identifiers – Example1,args,...
– Reserved Words – public, class, static,
...

– Literals – “Hello there, World!”
– Operators -- .
– Delimeters -- { } () [] ;

– Comments -- // end of class

• When these parts are combined according to
certain rules (the syntax of Java), a syntactically
correct Java program is created.

COP 3330: Introduction Page 47 © Mark Llewellyn

Identifiers
• We make up words for class names, method

names, and variables.
• These words are called identifiers.
• For example,

– Example1, main, System, out, println
are identifiers in our simple program.

– We made up Example1 and main(!); and others are
defined in Java API (Application Programming
Interface).

COP 3330: Introduction Page 48 © Mark Llewellyn

Identifiers (cont.)

• An identifier can be composed of any combination
of letters, digits, the under score character, and the
dollar sign; but it cannot start with a digit.

• We can use both upper case letters and lower case
letters in identifiers. But Java is case sensitive.
Identifiers Val, val and VAL are all different
variables.

• Some Legal Identifiers: x val count_flag Test1
$amount val1 stockItem

• Some Illegal Identifiers: 1val x# x-1 x+

COP 3330: Introduction Page 49 © Mark Llewellyn

Identifiers (cont.)

• Although we can choose any legal identifier to be
used, but it is nice to follow certain style
guidelines when make up an identifier.
– Choose meaningful names (not too long, not too short,

descriptive words)

– First character of a class name should be an uppercase
letter.

– First character of a method name and a variable should
be a lower case letter.

COP 3330: Introduction Page 50 © Mark Llewellyn

Reserved Words
• Reserved words are identifiers that have a special

meaning in a programming language.
• For example,

– public, void, class, static are reserved
words in our simple programs.

• In Java, all reserved words are lower case
identifiers (Of course we can use just lower case
letters for our own identifiers too)

• We cannot use the reserved words as our own
identifiers (i.e. we cannot use them as variables,
class names, and method names).

COP 3330: Introduction Page 51 © Mark Llewellyn

Literals

• Literals are explicit values used in a program.

• Certain data types can have literals.
– String literal – “Hello there,World!”

– integer literals -- 12 3 77

– double literals – 12.1 3.45

– character literals – ‘a’ ‘1’

– Boolean literals -- true false

COP 3330: Introduction Page 52 © Mark Llewellyn

Running Under JGrasp

Editing
window

Execution
window

COP 3330: Introduction Page 53 © Mark Llewellyn

Execution
window

To
compile

Compilation has created
the .class file

COP 3330: Introduction Page 54 © Mark Llewellyn

Execution
window

To
execute

COP 3330: Introduction Page 55 © Mark Llewellyn

Execution
window

To
execute

COP 3330: Introduction Page 56 © Mark Llewellyn

A Simple Applet Program
//Developer: Mark Llewellyn Date: May 15, 2007
//
// A Java applet program that prints “Hello there, World!”

import java.awt.*;
import java.applet.Applet;

public class Example2Applet extends Applet
{

public void paint (Graphics page) {
page.drawString(“Hello there, World!”, 50,50);

} // end of paint method

} // end of class

COP 3330: Introduction Page 57 © Mark Llewellyn

A Simple Applet Program (cont.)

• We import classes from packages java.awt and
java.applet. (awt = Abstract Windows
Toolkit)
– From java.awt package, we use Graphics class.
– From java.applet package, we use Applet class (and its

methods).
• Our new class Example2Applet extends the

already existing class Applet.
– Our class will inherit all methods of Applet if they are

not declared in our method

COP 3330: Introduction Page 58 © Mark Llewellyn

A Simple Applet Program (cont.)

• We declared only a paint method
– it is called after the initialization
– it is also called automatically every time the applet

needs to be repainted
• Event-driven programming

– methods are automatically called responding to certain
events

• drawString writes a string on the applet.
– drawString(string, x, y)
– top leftcorner of an applet is 0,0

COP 3330: Introduction Page 59 © Mark Llewellyn

A Simple Applet Program (cont.)

• To compile:
– javac Example2Applet.java

• To run:
– appletviewer Example2Applet.html
– It will print “Hello there, World!” in the applet window.
– The Example2Applet.html file should contain:

<html>

<applet code=“Example2Applet.class" width=300 height=100>
</applet>
</html>

COP 3330: Introduction Page 60 © Mark Llewellyn

A Simple Applet Program (cont.)

Output:

To run an applet
file from JGrasp

COP 3330: Introduction Page 61 © Mark Llewellyn

A Simple Applet Program (cont.)

Output:

The applet
execution

COP 3330: Introduction Page 62 © Mark Llewellyn

A Simple Applet Program (cont.)

Output:

